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a b s t r a c t

An important geometric and linear algebraic problem denoted as vector orthogonalization, fundamental
to handle contact detection and contact force descriptions in engineering applications, is here considered.
The problem is to find a set of linearly independent vectors that span the entire R3 Euclidean space given
only one of the base vectors. This paper contains the explanation on how theHouseholder transformation,
which is extensively used for matrix orthogonalization, provides an elegant analytical expression that
solves the vector orthogonalization problem. Based on theQRmatrix factorizationmethod, the orthogonal
vectors are produced using a Householder reflection that transforms the given vector into a multiple of
the unit vector whose entries are all zero with the exception of the first. Based on efficiency, accuracy
and numerical robustness criteria, the proposed technique is compared to other vector orthogonalization
methods. The numerical results show that the Householder vector orthogonalization formula is the most
efficient when it comes to outputting a set of orthonormal vectors, presenting speedups close to 1.017
times faster when compared to other efficient techniques. In addition, when dealing with Cn continuous
implicit surfaces, with n > 1, the Householder vector orthogonalization formula reveals to be particularly
useful for vector calculus since it provides a set of differential operators to calculate, not only the normal,
but also the tangent and binormal surface vector fields which can be used to calculate surface curvatures.
The major contribution of this paper is to explicitize how the Householder transformation holds an
analytical expression that calculates the tangent and binormal vectors from a given normal at a surface
point vector, which is computationally efficient and numerically robust for real-time computational
geometry and computer graphics applications, namely, for contact mechanics applications with implicit
surfaces of engineering problems with multiple contacts. Such a vector orthogonalization technique also
has direct applications in several CAD/CAM processes, ranging from the elaboration of rough solidmodels
to the precise manufacturing of a product.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In linear algebra, orthogonalization consists of finding a set of
orthogonal vectors, called the basis, which spans an entire space
or a particular subspace [1]. The vectors that form a basis are lin-
early independent, meaning that they aremutually orthogonal and
that any vector can be expressed as a linear combination of the vec-
tors that compose the basis. To construct a basis considering solely
a non-null vector demands an orthogonalization process capa-
ble of generating the remaining linearly independent vectors. The
operation to build such base vectors is here designated as vector
orthogonalization. In R3 Euclidean space, the vector orthogonal-
ization problem can be stated by the following question:
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How to determine a vector that is orthogonal to an explicitly given
arbitrary, fixed, real, and non-null 3-D vector?

Such a geometric problem emerges naturally in contact me-
chanics, not only from the necessity to calculate the minimum
distance between surfaces based on the common normal concept
[2,3], but also from the need to guarantee continuous control of
the tangential friction forces for smooth surfaces [4]. In 3-D contact
detection, vector orthogonalization is a frequently used and funda-
mental operation: each point of contact demands the determina-
tion of an orthogonal reference system composed by the normal,
tangent and binormal surface vectors which is then used to formu-
late theminimumdistance between surfaces for which the contact
force magnitude is directly proportional [5,6]. Since normal reac-
tion and friction forces are time dependent, this referentialmust be
calculated and updated with maximum efficiency. Depending on
the complexity of the mechanical system, the number of contact
pairs can be small (e.g., articular joint biomechanics [7]), medium
(e.g., human biomechanics of impact [8], vehicle crashworthiness
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analysis [9], rail-wheel simulations [10]), or large (e.g., particle col-
lision in geomechanical studies [11,12]) where millions of con-
tact pairs may occur in a single contact detection simulation. Thus,
techniques that increase contact detection efficiency are greatly
welcomed. Besides contact detection, efficient vector orthogo-
nalization calculation encounters applications in other fields of
computational geometry and computer graphics, namely, mesh
generation [13], continuation methods for implicit surface poly-
gonization or vector field plotting [14], curve and surface metrics
(e.g., perimeter, area, curvature), distance computation between
objects [4,15–17], calculation of tangential direction fields [18] and
surface fitting [19–21]. As for computer-aided design and manu-
facturing (CAD/CAM) processes, several applications make use of
a vector orthogonalization operation and would benefit from an
efficient technique such as shape interrogation [22,23], modeling
of generalized cylinders [24,25] and minimizing reference frame
computation [26,27].

There are several approaches to orthogonalize a vector. A first
and naïve approach for vector orthogonalization consists of en-
countering a non-collinear vector, v, whose cross-product with a
given arbitrary non-null vectornwould provide an orthogonal vec-
tor, t, with v, n, t ∈ RN . By applying a cross-product between n
and t a second vector of the base is obtained, b, with b ∈ RN . In
order to avoid vanishing vectors or quasi-null vectors, the angle
between the given vector, n, and the auxiliary vector, v, must be
sufficiently large so that the cross-product does not output a quasi-
null vector. An example of this approach is presented in [28]where
an orthonormal set in several dimensions is computed based on
the cross-product between the given vector and the column of the
identity matrix whose unit component value corresponds to the
entry of the given vector with the least magnitude. This approach
is also applied in [2]where a set of non-collinear vectors is obtained
based on the analogy with a square plate mechanism. A second ap-
proach for vector orthogonalization consists of writing an orthog-
onal matrix (e.g., the projection matrix of the given vector, nnT )
and rotating its column vectors so that one of them is collinear
to the given vector. Since this matrix is orthogonal, its columns
form a basis which can be rotated so that one of the basis vectors
becomes aligned with the given vector. By evaluating the angles
formed between the given vector and with each of the basis vec-
tors, one can determine the desired rotation by simply choosing
a basis vector that makes a sufficiently large angle with the given
vector, and the axis of rotation is given by their cross-product. This
approach has been used for calculating curvatures of implicit sur-
faces [29]. Note that these two approaches do not provide a direct
mathematical formula for the desired vector base. They rather con-
sist of geometric processes involving testing for eventual singular-
ities and malformed vectors. A third approach consists of applying
the first stage of a full formof theQRdecomposition to construct an
orthonormal basis, namely, a variant that uses either Givens rota-
tions or Householder reflections. These variants output a matrix Q
whose first column is collinear to the given vector. As for the most
common variant, i.e., the reduced form using the Gram–Schmidt
process is not applicable since, by definition, it only outputs a
collinear vector when given a matrix with a column form. Among
Givens rotations and Householder reflections, the latter is prefer-
able since it exhibits the lowest computational cost for QR decom-
position (Givens QR has twice more flop count than Householder
QR). Most frequently in the literature, these variants are presented
only for square matrices [30] although the decomposition exists
for a generic rectangular matrix [31]. Here, the particular case of
the input matrix defined as a 3 × 1 column is considered. A fourth
approach for vector orthogonalization, which is only applicable to
normal vectors derived from implicit and parametric surfaces, con-
sists of calculating the eigenvalues and eigenvectors of the normal
vector gradient (i.e., the Jacobian of the normal vector) since these
are the principal curvatures and principal directions at the surface
point, respectively [32]. The eigenvectors form an orthogonal basis
where one of the vectors is collinear to the given normal. Despite
the richness of geometric attributes associated with this approach,
it is only valid for C2 continuous surfaces and solving the eigen-
value/eigenvector problem is computationally costly as it demands
the calculation of the Jacobian matrix and to solve the character-
istic polynomial. In addition, the eigenvectors are numerical solu-
tions, and thus cannot be directly applied for analytical analyses.
All the mentioned approaches are valid for contact detection pur-
poses but only the Householder transformation may provide the
continuity control necessary to calculate friction forces in a contin-
uous manner. Therefore, in this paper, the strategy explored to or-
thogonalize a vector makes use of the transformation proposed by
Alston Scott Householder for the inversion of nonsymmetric ma-
trices [33] which offers an explicit proposal to find perpendicular
vectors. Such a transformation consists of a matrix that performs a
reflection of a vector along a (hyper)plane containing the origin.
The (hyper)plane is defined by an auxiliary vector whose com-
ponents make part of the transformation matrix. Note that a re-
flection is a special case of an orthogonal transformation. Rotation
matrices are another type of orthogonal transformations [1,34].
Numerically, the Householder transformation introduces blocks
of zeros into vectors or columns of matrices in an extremely sta-
ble manner regarding round-off errors. Due to its column-zeroing
functionality, the Householder transformation is extensively used
in linear algebra and numerical analysis. Besides QR decomposi-
tion, there are several applications of the Householder transfor-
mation for solving different mathematical problems formulated
as systems of linear equations: upper-triangularization of sym-
metric and nonsymmetric matrices, computation of determinants,
computation of matrix inverses, factorization of matrices (SVD),
approximation by linear least squares, and computation of eigen-
values and eigenvectors of real symmetric matrices [1,34,35].

In order to solve the vector orthogonalization problem via
Householder transformations, a specific Householder matrix H,
with H ∈ RNxN , is designed so that it annihilates all elements
of a given vector n (e.g., a normal 3-D vector at a surface point),
with the exception of the first, when premultiplied by this matrix.
Such a system of equations is equivalent to a set of collinear and
orthogonal vector relationships between the given vector n, with
n ∈ RN

\ {0}, and the columns of the matrix H. This set of vector
relationshipsmay bewritten as the linear algebraic equationHn =

λe1, with λ ∈ R and e1 ∈ RN , where e1 is the first column of
the identity matrix, I ∈ RNxN . By making the first column of H
collinear to n, and since H is orthogonal, the remaining columns
are perpendicular to the given vector. So, it is the content of the
Householder matrix rather than the reflected vector itself that is of
interest to solve the problem.

Note that, for the particular case of n being a 3-D normal
vector to a surface, this Householder transformation discloses
an explicit geometric meaning as the second and third columns
(or lines) provide formulae for calculating a tangent vector basis
to the given 3-D normal vector. This geometric meaning is
extremely relevant for contact detection formulations [2] since
the system of equations Hn = λe1 consists of a set of collinear
and orthogonal conditions formulated by the common normal
concept [3]. Consequently, this geometric meaning raises a couple
of practical questions: (i) given a 3-D normal vector to a surface,
n ∈ R3

\ {0}, which is the vector h ∈ R3
\ {0} that defines the

Householder matrix that contains the tangent vector basis? (ii) is
it possible to deduce an analytical expression for this vector h?
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One goal of this paper is to exploit the geometric meaning of
the Householder transformation for the vector orthogonalization
of the 3-D case and its application framework within contact me-
chanics, namely, using the formula for improving the efficiency of
contact detection methodologies and making use of its analyticity
for granting continuous contact forces. Hence, this paper comple-
ments a previous work where the Householder reflection or trans-
formation was solely used as an explicit formula readily prepared
to be applied for vector orthogonalization within a contact detec-
tionmethodology [2]. Here, the theoretical background and neces-
sary demonstrations, along with some examples, are presented in
order to show the usefulness and to exemplify the purpose of ap-
plying the Householder transformation for solving the vector or-
thogonalization problem. The computational efficiency, numerical
robustness, and accuracy of the Householder formula is also inves-
tigated by comparing the Householder technique to other vector
orthogonalization methods [2,28]. The benchmarked results shall
then reveal the most efficient algorithm(s) for vector orthogonal-
ization, an important feature for several engineering applications
in which contact detection of extremely large numbers of inter-
actions is necessary [17]. Another goal of this paper is to high-
light the utility of the Householder formula to calculate vector
tangential vector fields given an implicit surface functional and,
consequently, surface curvature. It is indeed an important geomet-
ric application of the formula in contact detection with implicit
surfaces, as the Householder transformation provides an elegant,
straightforward, and analytical formula to calculate a local orthog-
onal basis of a plane tangential to a surface point, thus finding the
tangent and binormal vectors. In fact, the Householder vector or-
thogonalization formula offers a set of differential operators to cal-
culate the normal, tangent, and binormal vector fields of a given
scalar field described by an implicit surface function.

The remainder of this paper is organized as follows. Section 2
provides a brief description of CAD/CAM applications that could
benefit from the calculation of orthogonal vectors by the House-
holder approach. In Section 3, the orthogonal vectorization within
the contact mechanics is contextualized revealing the importance
of this vectorial operation for calculating the minimum distance
between surfaces and for defining contact and friction forces. Sec-
tion 4 provides the seminal mathematical ideas that led us to con-
sider the Householder transformation as the key object to solve the
vector orthogonalization problem in contact detection. Section 5
reviews some preliminaries on orthogonal transformations and on
the definition of the Householder transformation, introduces the
formula that generates the orthogonal basis, deduces the House-
holder expression and proves the collinear and orthogonal rela-
tionships between the participating vectors. Section 6 introduces
a set of non-linear differential operators for calculating the nor-
mal, tangent, and binormal vector fields of an implicit surface and
also the relation of this transformation with the principal curva-
ture directions. Section 7 presents a numerical evaluation where
the Householder formula is compared to other vector orthogonal-
ization techniques in terms of numerical robustness and compu-
tational efficiency. Numerical examples and a contact mechanics
demonstrative application are given in Section 8. The remaining
sections are dedicated to the discussion, to present some conclu-
sions and future prospects.

2. CAD/CAM and vector orthogonalization

The importance of vector orthogonalization within CAD and
CAM can be summarized to its intrinsic geometric purpose which
consists of establishing an orthogonal reference system given a
vector at a spatial point. This point may lie on a geometric object
such as a curve, surface, or mesh, while the associated vector
is normal or tangent to the geometric object. In order to be
useful for CAD applications, this orthogonal reference systemmust
contain numerical and graphical information related to geometric,
visualization, and product manufacturing attributes.

There are several concrete CAD applications which benefit
directly from vector orthogonalization techniques. Regarding
geometric and topological methods for shape and solid modeling,
vector orthogonalization techniques are used for computing
skeleton edges of free-form solidmodels [36] and also formodeling
generalized cylinders (with applications in hair design [37,38],
muscle design [39,40], and other tube-like structures, e.g., ropes,
ribbons, strands, braids, knots). In the latter application, reference
frames are calculated based on the tangent vector to the drawn 3-D
curve [26], and should have minimal twist [27].

Also in CAM processes, vector orthogonalization plays an
important role as its tangent vectors are intimately related to
differential properties of surfaces, namely, curvature attributes
(see Section 6). This is of interest for shape interrogation purposes
which is extremely relevant for CAM systems. For instance, shape
information is used in manufacturing for calculating cutting path
sequences for numerically controlled milling machines, where
principal curvature calculations must be performed with the
greatest precision to avoid gouging problems and to improve the
fairing process [22]. In addition, shape interrogation is required
to check if a product satisfies functionality and aesthetic shape
requirements [23].

3. Contact mechanics and vector orthogonalization

Within contactmechanics, tracking the continuous evolution of
the contact point location, relative velocities, normal and tangen-
tial velocities are of utmost importance for appraising the contact
forces. Therefore, any valuable vector orthogonalization procedure
for contactmechanics applicationsmust not only contribute for ac-
curate and efficient contact detection procedures but also to ensure
that the normal force evaluation and the tangential (creep and fric-
tion) forces are properly monitored.

Regarding contact detection, the following concept is worth
mentioning: the points where two C1 continuous surfaces make
contact or, alternatively, have minimum distance, present normal
vectors that share a common direction [3]. Such a geometrical
feature is called the commonnormal concept and it consists of a set
of geometric conditions defined as confinement to geometric loci,
and as collinear and orthogonal vector relationships between the
minimum distance vectors jointly with the normal, tangent, and
binormal vectors [2,12], namely: collinearity between the distance
vector that unites surface points P and Q, dPQ , with the surface
normals, nOP and nOQ or, equivalently, orthogonal conditions
involving surface normal vectors and the tangent vectors tOP and
tOQ . Fig. 1 illustrates the common normal concept for a pair of
convex surfaces.

Hence, the common normal concept is crucial for the formula-
tion of contact detection procedures [2,41] as the minimum dis-
tance between surfaces is determined by the localization of the
surface points that satisfy the common normal conditions. Conse-
quently, the common normal concept is strictly related to vector
orthogonalization since the minimum distance between two sur-
faces requires, for each time instant, the definition of orthogonal
reference systems composed by the normal, tangent and binormal
surface vectors.

Vector orthogonalization operations are particularly relevant
for contact detection procedures that deal with implicit surface
representations, since only the normal vector is directly available
by taking the gradient of the surface function [3,14]. Contrary to the
parametric surface representation, where tangent vector formulae
are well-known both in the classical and contemporary literature
on Differential Geometry [32] and on Geometric Modeling [42],
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a b

Fig. 1. Orthogonal and collinear vector relationships of the common normal concept established between (a) normal and minimum distance vectors and (b) normal and
tangent vectors.
tangent vector formulae for implicitly defined surfaces are notwell
developed, being harder to find and more scattered throughout
the literature in comparison to parametric surfaces. While, for
parametric surfaces, tangent and binormal vectors are all obtained
by straightforward differential and vector calculus, deriving such
vectors recurring to differential operators is not as trivial for
the implicit surface case (see Section 6). Thus, defining the
explicit formulae of such a geometric attribute for implicit surfaces
is valuable for computational geometry, computer graphics
and related communities, namely, the computational mechanics
community.

The vector orthogonalization procedure must also be accurate
since the tangent vectors enter directly in the contact detection
formulation. Accuracy is here considered as the value of the inner
product between the given normal vector and the computed
tangent vectors which must be virtually zero. Any small error
in calculating orthogonal vectors may affect the contact points
calculation and the contact forces and, ultimately, affect the results
obtained from solving the equations of motion.

Regarding force models, one of the continuous approaches to
solve contact-impact problems relies on continuous contact and
friction force models. These models represent the forces arising
from body interactions, assuming that local deformations and,
consequently, the forces vary in a continuous manner (i.e., are
considered as continuous functions) [4–6]. These forces are then
introduced into the equations of motion of the mechanical system
as external generalized forces, leading to continuous velocities
and accelerations. This promotes a stable numerical integration
of the equation of motion and discontinuous disturbances for
control are diminished or even nonexistent [43]. The correct
knowledge of these forces during the contact process is crucial for
the design and analysis of multibody systems. Thus, the geometric
information computed by a vector orthogonalization technique
(i.e., an orthogonal reference system composed by the normal,
tangent and binormal surface vectors) is necessary to efficiently
and accurately calculate the contact forces established between
two interacting bodies for each contact point, as the normal
reaction direction coincides with the surface normals and the
friction force direction are written in order to the tangential vector
basis vectors [4], as well as other relevant contact quantities. Since
reaction and friction forces are time dependent, this referential
must be calculated and updated with maximum efficiency,
especially for real-time applications [41]. For mechanical systems
with bodies in contact describingmotions such as sliding or rolling,
the contact methodologies must provide a continuous control
of the normal and tangential vectors which, consequently, will
guarantee continuous force and moment loading due to tangential
friction forces.

4. 2-D vector orthogonalization

Finding a perpendicular vector in 2-D Euclidean space has a
well-known rule of thumb in computer geometry: just swap the
Fig. 2. 2-D vector orthogonalization.

vector components and invert the sign of one of the entries (Fig. 2).
More specifically, given an arbitrary, non-null and real valued
vector n ∈ R2

\ {0}, the orthogonal vectors, t and −t, with t ∈

R2
\ {0}, are obtained by premultiplying n by one of the following

2 × 2 real valued generalized permutation matrices, P+ and P−:

P+n =


0 −1
1 0

 
nx
ny


=


−ny
nx


= t (1)

P−n =


0 1

−1 0

 
nx
ny


=


ny

−nx


= −t. (2)

The generalized permutation matrices P+ and P− are in fact
reflection matrices in which the reflecting line segment (i.e., the
2-D (hyper)plane) makes an angle of ±45° with the given vector
n. Since the permutation matrix is valid for the 2-D case, it is
legitimate to question if there exists a similar or an equivalent
transformation to perform vector orthogonalization in 3-D. If such
a transformation exists, does it represent a reflection, a rotation, or
another type of orthogonal transformation?

Within linear algebra and numerical analysis, the Householder
transformation represents the generalization of reflection matri-
ces. To assume that the Householder transformation encloses a
highly efficient, accurate and robust solution towards the vector
orthogonalization problem, that is capable of satisfying real-time
applications, becomes quite a natural hypothesis. Therefore, the
purpose is to exploit a formula that is both a non-trivial and ele-
gant way to obtain a vector basis that is orthogonal to an arbitrary
vector.
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5. 3-D vector orthogonalization

5.1. Orthogonal matrices

LetK be the field of real numbers, and let E be a real vector space
over K defined as the three-dimensional Euclidean space R3. The
elements of K are called scalars and the elements of E are called
vectors. A vector space E is a set that is closed under finite vector
addition and scalar multiplication. In 3-D space, a vector basis is
any set of three linearly independent vectors capable of generating
the vector space of E and is defined as a subset of vectors v1, v2, v3
in E that are linearly independent and span E.

Central to the problem in question are the definitions of
orthogonality for vectors and matrices. Two vectors, u ∈ R3 and
v ∈ R3, are said to be orthogonal if they meet at a right angle,
i.e., uTv = 0. A matrix Q ∈ R3×3 is orthogonal if its inverse is its
transpose. An equivalent characterization of an orthogonal matrix
is that its columns form an orthonormal set of vectors q1, q2, q3 ∈

R3. Therefore, a matrix is said to be orthogonal if its columns are
linearly independent, hence, forming a basis. Orthogonal matrices
have several key properties. For instance, by multiplying a vector
by an orthogonal matrix the norm of a vector remains invariant,
hence, orthogonal matrices preserve Euclidean length. It follows
that all eigenvalues of an orthogonalmatrixQ have unitmagnitude
and, consequently, | det(Q)| = 1.

Geometrically, multiplying a vector by an orthogonal matrix
reflects the vector about a plane or rotates it along an axis. In
2-D, these transformations have simple geometric interpretations:
reflection matrices reflect an arbitrary vector n ∈ R2 across a
rectilinear curve; rotation matrices by premultiplying an arbitrary
vector n ∈ R2 produce a vector Qn that lies at an angle θ to n.

5.2. Householder reflection

The Householder transformation consists of a linear trans-
formation that describes a reflection about a (hyper)plane that
contains the origin and sends a chosen axis vector, h, to its neg-
ative and reflects all other vectors through the (hyper)plane per-
pendicular to h. This transformation has the following definition
(Fig. 3).

Definition. A mapping RN
→ RN , n → Hn, for a matrix H ∈

RNxN of the form H = I − 2hhT/hTh, with h ∈ RN , is called a
Householder transformation.

Thus, the matricial expression for the 3-D Householder matrix is

H = I − 2
hhT

hTh
=


1 − 2

h2
1

h2
−2

h1h2

h2
−2

h1h3

h2

−2
h1h2

h2
1 − 2

h2
2

h2
−2

h2h3

h2

−2
h1h3

h2
−2

h2h3

h2
1 − 2

h2
3

h2

 (3)

where h =

h1 h2 h3

T and h = ∥h∥2 is the Euclidean norm of
vector h.

Note that the Householder matrix results from the sum of two
orthogonal matrices: the identitymatrix and the projectionmatrix
of h upon itself. Depending on the coordinate type considered,
Eq. (3) can be expressed in either Cartesian or curvilinear
coordinates (e.g., polar coordinates).

Table 1 lists the orthogonal matrix properties of the House-
holder reflection along with the corresponding geometric
meaning.

A Householder transformation is geometrically defined as a
reflection of n about the (hyper)plane H = {x ∈ RN

: xTh = 0},
Fig. 3. Householder reflection illustrated on the plane that containsn,h, andHn.H
defines a mirror (hyper)plane reflecting any vector to the other half (hyper)space.

where h is the vector whose components define the (hyper)plane.
This follows from the vectorial identity obtained by applying the
parallelogram law that decomposes the vector n into a component
in the direction h and into an orthogonal component: n −

2(hTn)h = n− (hTn)h− (hTn)h (see Fig. 3). Note that the vectors
n, h, and Hn are coplanar. In particular, if n ∈ RN and hTn = 0,
thenHn = n. If the angle betweenn andh is denoted byϕ, then the
angle betweenh andHn is equal toϕ+π . From these observations,
the vector Hn is the reflection of n in the (hyper)planeH .

5.2.1. 3-D Householder vector orthogonalization formula
Within the 3-D vector Euclidean space E, the objective is to

obtain a subspace B that spans E = {e1, e2, e3}, where ei are
the columns of the identity matrix. Therefore, the solution of
the vector orthogonalization problem consists of a base, B =

{n, t, b}, where n is the explicitly given vector and t and b are
the desired orthogonal vectors with n, t, b ∈ R3

\ {0}. In
the face of the typical nomenclature used in contact mechanics,
vectors, n, t, b are referred to as the normal, tangent, and binormal
vectors respectively. Ideally, the base B should have an analytical
expression that depends solely on the normal vector, i.e., B
= {n, t, b} ⇔ B(n) = {n, t(n), b(n)}, where both tangent and
binormal vectors depend on the coordinates of n.

Regarding the case of n being a 3-D normal vector to a surface,
the Householder transformation that sets the normal vector to be
collinear with the first column thus discloses an explicit geometric
meaning for the second and third columns (or lines) as they
provide the formulae for calculating a tangent vector basis to the
given 3-D normal vector. This geometric meaning is extremely
relevant for contact detection formulations [2] since the system of
equations Hn = λe1 consists of a set of collinear and orthogonal
conditions formulated by the common normal concept [4]. Hence,
what remains is to determine the auxiliary vectorh that produces a
matrixHwhose rows satisfy the following collinear and orthogonal
conditions:

n ∥ h1, n⊥h2⊥h3 (4)

where h1, h2, h3 are the columns of the Householder matrix, i.e.,

H =

h1 h2 h3


=

hT
1

hT
2

hT
3

 . (5)

Given the Householder matrix (Eq. (3)) a construction proof
of vector orthogonalization is provided hereafter. The analytical
formula consists of a matrix whose rows or columns form an
orthogonal basis. The overall strategy relies on applying the
Householder transformation to zero the 3 − 1 elements below
the first element of a given column vector. Thus, the geometric
conditions of collinearity and orthogonality of Eq. (4), written as
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Table 1
Orthogonal matrix properties of the Householder reflection matrix. Vectors u, v ∈ RN and ∥ · ∥2 represents the Euclidean norm.

Property Equation Geometric meaning

H is orthogonal HTH = I, (Hu)THv = uT v H preserves norms and angles
H is symmetric HT

= H, (Hu)T v = uT (Hv) H preserves norms and angles
H is involuntary H2

= I H reflects u to its mirror image, a second application of H sends it back again
Unitary determinant det(H) = −1 H turns the unit cube inside out along one axis
Unitary matrix norm ∥H∥2 = 1 H preserves norms
a system of three equations in order to 3 unknowns (i.e., the
coordinates of vector h), can be expressed in the matrix form as:

n ∥ h1

n⊥h2

n⊥h3

⇔


hT
1n = λ ∥n∥2

hT
2n = 0

hT
3n = 0

⇔

hT
1

hT
2

hT
3

 
n


=

h1x h1y h1z
h2x h2y h2z
h3x h3y h3z

 nx
ny
nz



=


λ ∥n∥2

0
0


(6)

with λ ∈ R \ {0} and where h is the unknown vector for which
an analytical expression is desired. Note that, by Eq. (3), H is not
uniquely definedby a single vectorh, thus, anynon-nullmultiple of
h defines the same Householder matrix. Therefore, a proper vector
h that defines the desirable Householder matrix H must be such
that Hn is a nonzero multiple of e1 and Eq. (6) can be presented in
a more compact form as:

Hn = λ ∥n∥2 e1. (7)

Note that Eq. (7) is essentially the first stage of a QR decomposition
using Householder reflections [1,30,35] with H playing the role of
Q and λ playing the role of R.

Vector h is chosen so that an arbitrary and non-null (but fixed)
vector n is mapped by H onto a multiple of the axis vector e1. The
deduction of the associated vector h that defines the Householder
matrix of Eq. (3) has the following two steps: (i) determination
of the magnitude and sense of vector h; and (ii) determination
of the direction of vector h. The former step is done considering
that orthogonal matrices preserve the lengths of vectors, ∥Hn∥2 =

∥n∥2, thus, there are only two possibilities for λ:

Hn = ∥n∥2 e1 ∨ Hn = −∥n∥2 e1 ⇒ λ = ±1. (8)

The latter step is done recalling that any non-null multiple of h
(e.g., τh, with τ ∈ R\{0}) has the sameHouseholdermatrix which
is an important result to symbolically determine h:

Hn = ±∥n∥2 e1 ⇔


I − 2

hhT

hTh


n = ±∥n∥2 e1

⇔ n − 2
hhT

hTh
n = ±∥n∥2 e1

⇔ n − τh = ±∥n∥2 e1
⇔ τh = n ∓ ∥n∥2 e1 ⇒ h = n ∓ ∥n∥2 e1 (9)

with

τ = 2
hTn
hTh

. (10)
To ensure that the first component of h is always non-null for any
nx, the first component of h must be chosen as the maximal value
of the following set:

µ = max ({nx − ∥n∥2 , nx + ∥n∥2}) (11)

with nx ∈ R.
It is also necessary to demonstrate, by symbolic calculus, that

the lines (or columns) of the H matrix form an orthogonal basis
in which the first column is collinear to n. If the given vector is
written as

n =

nx ny nz

T (12)

andwithout loss of generality, by assuming that the norm of vector
n is unitary, ∥n∥2 = 1, and considering vector h to be

h = n + ∥n∥2 e1 =

nx + ∥n∥2 ny nz

T (13)

inwhich the first element ofh is considered asµ = nx+∥n∥2, thus,
h = (2(nx + 1))1/2, then the first column of H, h1, is expressed as

h = n + ∥n∥2 e1 ⇒ h1 =


1 − 2

h2
1

h2

−2
h1h2

h2

−2
h1h3

h2



=


1 − 2

(nx + n)2

h2

−2
(nx + n) ny

h2

−2
(nx + n) nz

h2

 (14)

The normal vector and the first column vector are collinear if and
only if their cross-product outputs a null vector:

n × h1 =


ny


−2

(nx + n) nz

h2


− nz


−2

(nx + n) ny

h2


nz


1 − 2

(nx + n)2

h2


− nx


−2

(nx + n) nz

h2


nx


−2

(nx + n) ny

h2


− ny


1 − 2

(nx + n)2

h2





=


ny


−2

(nx + 1) nz

2 (nx + 1)


− nz


−2

(nx + 1) ny

2 (nx + 1)


nz


1 − 2

(nx + 1)2

2 (nx + 1)


− nx


−2

(nx + 1) nz

2 (nx + 1)


nx


−2

(nx + 1) ny

2 (nx + 1)


− ny


1 − 2

(nx + 1)2

2 (nx + 1)




=

ny (−nz) − nz

−ny


nz (−nx) − nx (−nz)

nx

−ny


− ny (−nx)

 =

0
0
0


(15)

with

h = ∥h∥2 =


2(nx + 1). (16)
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Fig. 4. The desired Householder matrix transforms n into a multiple of e1 .

Since h1 is collinear to n then, by the property of matrix orthog-
onality, the second and third columns of H, h2 and h3, are also
perpendicular to n. Consequently, the tangent and binormal vec-
tors can be considered as the second and third columns of H,
respectively.

In geometrical terms, as represented in Fig. 4, this result can be
rephrased by stating that for any vector n there exists a (3 − 1)-
dimensional (hyper)planeH passing through the origin in R3 such
that the reflection Hn of n in H is equal to a nonzero multiple of
e1. To find H it suffices to identify a vector h ∈ R3 normal to H .
Since H is unaffected by rescaling h, the length of h is immaterial.
As mentioned previously, the vectors Hn, n and h are coplanar.
Therefore, h is a suitable linear combination of n and e1.

It has been shown that the process of vector orthogonalization
may consist in transforming a vector by applying an operation of
reflection, but the same result could be obtained from a rotation.
Recall that the product of two reflections gives a rotation matrix
as stated by the theorem of Cartan [32,33]: every orthogonal
transformation in RN can be expressed as a product of at most
N simple reflections by (hyper)plane. Determining such rotation
matrices is outside the scope of this paper.

5.3. Algorithm for 3-D vector orthogonalization

Table 2 presents the pseudo-code to calculate the Householder
matrix for vector orthogonalization in 3-D Euclidean space. The
only input is the non-null, fixed, and real valued vector n =

[nx ny nz]
T . Note that step 1.2 of the algorithm (Table 2) ensures

that the first component of h is always non-null.

6. Differential operators for calculating normal, tangent, and
binormal vector fields of implicit surfaces

Several areas of mathematics and engineering make use of the
implicit object definition to represent the geometric loci of curves
and surfaces [3,14,44]. Implicit geometric objects are defined by
a scalar functional F(x), F : x ∈ R3

→ R (either a Euclidean
or non-Euclidean spatial metric), and the curve or surface is the
set of points, x, that satisfy a level-set equation, e.g., F(x) = 0.
In vector calculus, for an implicitly defined surface, the normal
vectors are obtained by differentiation of the surface function
in order to the spatial coordinates. When considering Cartesian
coordinates, the normal vectors are, by definition, the variation
of the surface functional in the x, y, and z directions. These first
order spatial variations are gathered together forming the gradient
operator. This opens the way to apply the Householder vector
orthogonalization formula (see Eqs. (3) and (9)) to the surface
gradient vector leading to the deduction, by symbolic calculus, of
a set of non-linear differential operators that provide tangential
vector fields to an implicit surface. These non-linear differential
operators are directly obtained by symbolic substitution of the
Table 2
Pseudo-code for 3-D Householder vector orthogonalization.

1. Determine vector h:
1.1 Calculate the Euclidean norm of the given vector, n = ∥n∥2;
1.2 Determine the first component of h : h1 = max({nx − n, nx + n});
1.3 Define h2 = ny and h3 = nz ;

2. Determine matrix H = [h1 h2 h3]:
2.1 Calculate the Euclidean norm of h, h = ∥h∥2;
2.2 Use the analytical expression of H to calculate the matrix:

H = I − 2 hhT
hT h =


1 − 2

h2
1

h2
−2

h1h2

h2
−2

h1h3

h2

−2
h1h2

h2
1 − 2

h2
2

h2
−2

h2h3

h2

−2
h1h3

h2
−2

h2h3

h2
1 − 2

h2
3

h2

.

3. Set the tangent, t, and binormal, b, vectors as the 2nd and 3rd column of H,
respectively: t = h2 and b = h3 .

gradient vector components into the Householder formula. In
this manner, the operators are expressed in order to the first
order differential terms along x, y, and z, i.e., ∂/∂x, ∂/∂y, and
∂/∂z (see Example 4 in Section 8). Therefore, the Householder
transformation provides, in an explicit fashion, an analytic formula
of geometric attributes related to tangential vectors of an implicit
surface. Obviously, these operators are only valid for implicit
objects that are at least C1 continuous.

Since differential operators are available to compute tangent
vector fields to an implicit surface, an immediate application
consists of determining the curvature at a point. The link between
the tangential vectors and the curvature is given by the following
expression:

kw = −
wT

∇∇Fw
∥n∥2

(17)

where w ∈ R3 is a unit vector that belongs to the tangent
plane at the surface point, ∇∇F ∈ R3×3 is the Hessian matrix
of the implicit function, and n is the normal vector or gradient
of the implicit function at the surface point [36]. An interesting
topic that naturally arises consists of determining if the tangent
vectors computed with the Householder formula are or are not
principal curvature directions. Vector w can be expressed as
a linear combination of the orthonormal basis defined by the
Householder formula,

w (θ) = cos (θ) t + sin (θ) b (18)

where θ ∈ [0, 2π [ is the angular deviation of w from the tangent
base vectors. If θ is a principal curvature direction then itmust zero
the derivative of kw in order to θ , i.e., the maxima and minima of
kw are given by

dkw
dθ

= 0 ⇔ tan (2θ) =
2tT∇∇F b

tT∇∇F t − bT∇∇F b
= M

⇔


θ = θ1 =

arctanM
2


∨


θ = θ1 +

π

2


. (19)

Assuming that t and b are principal curvature directions, then the
angular deviation is equal to zero. This assumption implies that

arctanM = 0 ⇔ tT∇∇F b = 0 ⇔ tTq = 0 (20)

with q = ∇∇F b. Since t and b are orthogonal, in order to q to
maintain vector orthogonality with t, the Hessian matrix must be
a full scalar matrix, i.e.,∇∇F = λI with λ ∈ R, or a scalar matrix
with some diagonal entries equal to zero. The plane, sphere and
cylinders (e.g., spherical, parabolic, and hyperbolic cylinders) are
examples of such surfaces. However, in general, the Householder
vectors do not correspond to the principal curvature directions
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Table 3
Speedup ratios between the considered vector orthogonalization techniques,
taking HH as the baseline. The CPU time variance of the considered vector
orthogonalization techniques is also shown. (IQM—interquartile range).

Householder Eberly Square plate Projection matrix

Speedup – 1.017 2.795 7.527
IQM 3.49 × 10−7 3.48×10−7 1.05 × 10−6 2.79 × 10−6

since Eq. (20) does not hold for the vast majority of Hessian
matrices, thus, the orthonormal basis defined by the Householder
formula presents an angular deviation that varies throughout the
surface.

7. Numerical evaluation of vector orthogonalization tech-
niques

A series of numerical tests was carried out to compare,
in terms of computational efficiency, numerical accuracy and
numerical robustness, the Householder formula with other
vector orthogonalization techniques. For practical purposes, the
considered techniques, which have been briefly described in
the introduction, are here called as Householder (HH), Eberly
(EB) [28], Square Plate (SP) [2], and Projection Matrix (PM) [29].
The numerical tests consisted of calculating real-valued tangent
and binormal vectors for a set of 105 unitary vectors in R3.
The input vectors were randomly calculated with a uniformly
distributed pseudorandom number generator. CPU execution
times to compute both tangent and binormal vectors were
then measured. Whenever possible, symbolic calculations were
performed upon the vector orthogonalization expressions in order
to find a simplified expression with the minimum number of
floating-point operations per second (FLOPS) (see the Appendix).
Each expression was further simplified having in consideration
that the input vectors were unitary. By direct examination of
the analytical and numerical expressions, the considered vector
orthogonalization techniques revealed to be numerically robust
since no type of indetermination occurs (e.g., 1/0, 0/0, 0×∞,±∞,
√

− 1). A statistical analysis was performed upon the measured
CPU times and relative speedups. Finally, the accuracy (i.e., the
value of the inner product between the givennormal vector and the
computed tangent vectors) of each technique was also calculated
to verify how close the products nT t, nTb and tTb are to zero.
Table 3 lists the speedups (defined as the ratio between the 10%
trimmed mean execution time of the EB, SP, PM and HH) and the
interquartile ranges of each vector orthogonalization technique.
These measures are robust to outliers, and thus, are statistically
representative of the time data. Table 4 lists the average and
variance accuracy measures for the considered battery of unit
vector sets. The vector orthogonalization code was developed in
MATLAB

R⃝

R2009b and ran on a PC with an Intel
R⃝

CoreTMi7 CPU
870 @ 2.93 GHz processor with 8 GB of RAM. All the calculations
and CPU time measures were performed with double precision. As
a special remark, the same numerical test was performed using
MATLAB

R⃝

’s qr (·) command [45], which computes the Q and R
matrices using Householder reflectors generating a full form QR
decomposition, presenting a speedup value of approximately 2.20
and similar accuracy statistics in the order of 10−18.

8. Examples

Four examples of the use of the Householder reflection formula
for vector orthogonalization (Eqs. (3) and (9)) and an example in
contact mechanics are presented in this section. The first example
illustrates the orthogonalization of an arbitrary vector. The second
example consists of a vector contained within the xOy plane giving
rise to a permuted vector (Eq. (2)) and the z canonical base vector
Table 4
Accuracy statistics of the considered vector orthogonalization techniques. (TM—
10% trimmed mean; IQM—interquartile range).

Householder Eberly Square plate Projection matrix

TM
nT t 1.69×10−19

−1.71×10−20
−1.95×10−18

−3.51 × 10−18

nTb 1.15×10−19
−2.91×10−19 1.83×10−18 2.36 × 10−19

tTb −5.92×10−20 1.62×10−20
−2.41×10−19 7.86 × 10−19

IQM
nT t 8.33×10−17 0 3.47×10−18 1.11 × 10−16

nTb 1.11×10−16 5.55×10−17 2.47×10−19 1.11 × 10−16

tTb 2.78×10−17 0 1.39×10−18 1.11 × 10−16

(for a Euclidean space), while the third example contemplates the
application of the formula to a canonical base vector which gives
rise to an orthonormal basis. The fourth example can be regarded
as the application of the derived differential operators to a generic
implicit surface that is Cn continuous, with n > 1. This example is
supplemented with Fig. 5 that illustrates the normal, tangent and
binormal surface vector fields (or superficial direction fields) for
some members of the quadric surface family. The final example
consists of a demonstrative application representing a ball rolling
inside a spherical bowl (i.e., two spheres in a conformal contact
configuration). The objective of this example is to emphasize the
points mentioned above in Section 3 regarding the applicability
of the Householder transformation in contact mechanics and its
merits to realistically simulate the motion of a mechanical system.

Example 1. Consider the non-null vector n = [−2.500, 10.02,
3.960]T . The auxiliary vector is equal to h = [8.560, 10.020,
3.960]T and the corresponding Householder matrix is given by

H =

 0.226 −0.906 −0.358
−0.906 −0.060 −0.419
−0.358 −0.419 0.834


.

Example 2. Consider the non-null vector n = [1.500, −0.200,
0.000]T . The auxiliary vector is equal to h = [3.013, −0.200,
0.000]T and the corresponding Householder matrix is given by

H =


−0.991 0.132 0.000
0.132 0.991 0.000
0.000 0.000 1.000


.

Example 3. Consider the versor n = [0.000, 1.000, 0.000]T . The
auxiliary vector is equal to h = [1.000, 1.000, 0.000]T and the
corresponding Householder matrix is given by

H =

 0.000 −1.000 0.000
−1.000 0.000 0.000
0.000 0.000 1.000


.

Example 4. Consider the normal of a Cn, n > 1, continuous surface
implicitly defined. Given the functional expression of the implicit
surface, F(x) : R3

→ R, whose zero-level defines a set of surface
points ∂Ω =


x =


x y z

T
∈ R3

: F (x) = 0

, the normal

vector is derived as

n = ∇F (x, y, z) =

Fx Fy Fz

T
.

The auxiliary vector comes as

h =

µ Fy Fz

T
,

with

µ = max ({Fx − ∥∇F∥2 , Fx + ∥∇F∥2}) .
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a b

c d

Fig. 5. Superficial direction fields defined by the normal (red), tangent (green), and binormal (blue) vectors. (a) Elliptic paraboloid (radii: 1.0, 1.0); (b) ellipsoid with tangent
and binormal streamlines (radii: 0.5, 0.4, 0.45); (c) hyperbolic paraboloid with tangent and binormal streamlines (radii: 1.0, 1.0); (d) one sheet hyperboloid (radii: 1.0, 1.0,
1.0). Radii are listed for the x, y, and z directions of the canonical quadric representation. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Consequently, the Householder’s analytical expression is written
as

H =


1 − 2

µ2

h2
−2

µFy
h2

−2
µFz
h2

−2
µFy
h2

1 − 2
F2y
h2

−2
FyFz
h2

−2
µFz
h2

−2
FyFz
h2

1 − 2
F2z
h2

 ,

with

h =


µ2 + F2y + F2z

where the first, second and third columns can be assigned as
Dn(F(x)),Dt(F(x)), and Db(F(x)), respectively. Hence, given the
implicit surface function F and a specific level-set, it is possible
to visualize the set of orthogonal vector fields defined by Dn(F(x))
and corresponding tangential vectors Dt(F(x)) and Db(F(x)). Fig. 5
illustrates the vector fields of the surface’s gradient orthogonal
basis for an elliptic paraboloid, ellipsoid, hyperbolic paraboloid and
a one sheet hyperboloid. As expected, both tangent and binormal
vector fields define tangential direction fields upon the surfaces
which, by numerical integration, draw surface curves defined as
streamlines [18] that are orthogonal trajectories, as shown in
Fig. 5(b)–(c). Note that, at each point throughout the surface, the
basis vectors are everywhere orthogonal but are rotated along
the normal vector direction. Although vector orthogonalization
is performed locally, the tangent and binormal vector fields are
globally consistent. This vectorial aspect is related to the angular
deviation of the Householder tangent vectors from the principal
curvature directions as discussed in Section 6.

Example 5. The demonstrative application considered is a simple
contact system which consists of a small ball rolling inside a
spherical bowl (see Fig. 6). The bowl is made of PTE, has a radius
of 1.0 m and is assumed to have infinite mass, thus, is considered
rigid and stationary. The ball is a homogeneous sphere made
of PTFE, with a mass of 1.0 kg, a radius of 0.1 m, a moment
of inertia equal to 0.01 kgm2, an equivalent stiffness equal to
140 × 106 N/m3/2, a coefficient of restitution equal to 0.9, and a
Coulomb friction of 0.01. The ball is released from a point on the
equator of the bowl with an initial y-angle and y-angular velocity
of 10.0 rad and 9.0 rad/s, respectively, and rolls under the action of
gravity, which acts in the negative z direction, and contact forces
which are modeled based on the Hunt and Crossley contact [6]
and Coulomb friction [4] models. Therefore, the ball rolls (and
eventually slides) throughout the bowl in a descending spiral path
until it lands on the lowest point of the bowl, where it then slightly
bounces until losing all its mechanical energy due to damping and
frictional energy dissipation. This example clearly benefits from
the continuity of the tangential and binormal vector fields ensured
by the Householder method, since rolling (and sliding) demands
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a b

Fig. 6. The rolling ball inside a bowl example. (a) When the ball is released with an initial angular velocity it describes a descending spiral path. (b) Top view of the bowl
where the spiral form of the ball’s path is more evident.
a continuous evaluation of the tangential (creep and friction)
forces.

9. Discussion

The generalized 2-D permutation matrix serves as a motto
for the assumption that orthogonal transformations may offer a
potential solution for the vector orthogonalization problem. In
this paper, it is shown how the orthogonal transformation defined
by Householder [33] holds as an efficient, accurate and elegant
analytical expression that solves this problem for a diverse range of
applications. One of themotivations of thiswork is to explicitize an
expression that calculates the tangent and binormal vectors from a
givennormal at a surface point, and thatmust be a computationally
efficient and robust expression for contact detection and normal
and tangential force calculations in applications with implicit
surfaces.

The numerical tests (Table 3) indicate that every vector
orthogonalization technique has small interquartile range values,
thus, the measured times do not fluctuate much around their
mean value making it reliable to compare speedups among the
different techniques. More importantly, the results indicate that,
on average, the Householder formula is the most efficient from
all considered vector orthogonalization techniques. Although both
HH and EB techniques show similar computational performance
and are both simple algorithms, the former technique achieves
speedups that are close to 1.017 times better (Table 3). This
slight difference (1.7%) can be significant when translated to time
savings for mechanical systems with thousands or even millions
of contact pairs that happen in a single time instant of a dynamic
simulation [11,12]. The 1.7% speedup is intimately related to the
number and type of floating-point operations involved: while HH
presents an additional 2 summations and 2 multiplications EB has
1 division more, 2 moduli, and, detrimentally, 1 square root which
justifies the higher computational time as such a flop consists of a
costly operation. Note that HH is more efficient when considering
a unit vector as input but not as efficient for an arbitrary vector.
In this case, EB presents lesser FLOPS (e.g., compare HH formula
in Table 2 with the following EB tangent vector expressions
(assuming |nx| ≥ |ny|): t = [−nz, 0, nx]
T and b = [nynx, −n2

z −

n2
x , nynz]

T ). The drawback is that EB applied to arbitrary vectors
does not guarantee that the output vectors are unitary, while for
HH the computed tangents are always unit vectors which is an
advantageous feature since it is not necessary to normalize them
afterwards. Regarding the SP and PM techniques, these are less
efficient as they require a greater number of FLOPS. Contrary to the
SP and MP techniques, the Householder formula does not consist
of an intricate geometric process involving vector testing. Note
that the same numerical evaluation but with increased number of
inputs were also run, showing that independently of the number
of vectors tested the observed speedups remained greater than 1.0
with respect to HH (results not presented). As for MATLAB

R⃝

’s qr
(·) command performance, although the software uses compiled
LAPACK routines for its basic linear algebra computations, the
code is not fully optimized for 3 × 1 input matrices, hence, the
large speedup comparative to the implemented HH. Relative to
vector orthogonalization accuracy, all methods revealed to be
very accurate with inner product values virtually equal to zero
(10−20–10−18).

One of the culminating points of the Householder formula
is that its analyticity offers a useful symbolic expression to
deduce a set of differential operators to calculate tangential vec-
tor fields to a surface. From the standpoint of implicit sur-
faces, the Householder transformation provides explicitly analytic
formulae for other geometric attributes defined with tangential
vectors, namely, principal curvature directions and associated cur-
vatures. These attributes are extremely important geometric quan-
tities for CAD/CAMprocesses ranging from the elaboration of rough
solidmodels to the precise geometric description of a product, such
as shape interrogation [22,23], and minimizing reference frame
computation [26,27], which may benefit from using the House-
holder vector orthogonalization approach. The tangential differ-
ential operators are of great interest for linear algebra, vector
calculus, differential geometry or multivariate calculus, and can
come in handy in different physical areas that are mathematically
formulated based on field theory, such as electromagnetism and
continuummechanics. Apparently the practicality and applicabil-
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ity of the Householder reflection in computer graphics, geometry
design and CAM is yet to be explored and expanded to other ge-
ometric and algebraic problems. Note that the theoretical results
here presented are extendible for RP , P > 3.

As future works, it would be interesting to instigate about
the following matters: (i) to determine the Householder matrices
that, when premultiplying the normal vector, give raise to tangent
vectors; (ii) to better understand the tangential streamlines that
are traced upon a surface given by the tangent vector fields of an
implicit surface; (iii) to explore other orthogonal transformations
such as the exponentialmatrixwhich generalizes every orthogonal
transformation; (iv) to determine the rotation matrices that
are equivalent to the reflection matrix; (v) to explore similar
theoretical and numerical results for the EB formula; and (vi) to
perform more in-depth analysis regarding differential geometry
applications of the Householder formula.

10. Conclusion

This paper presents interesting results, application framework
and extensions of the Householder reflection matrix with the
explicitation of the associated formula to calculate tangent
and binormal vectors given a normal vector. To the authors’
knowledge, this explicit description of the use of the Householder
transformation to orthogonalize 3-D vectors and its application to
contact mechanics does not appear to be elsewhere. The formula
is simple, efficient, and numerically robust for geometric and
linear algebraic problems. The applicability of the Householder
formula as an efficient geometric tool in contact mechanics
with implicit surfaces is emphasized and demonstrated, as it
provides the orthonormal set of tangential vectors that enters the
minimum distance calculations and a continuous control of the
tangential force functions. Although computing orthogonal vectors
is a quite basic operation, the advantages of the Householder
technique are highlighted by introducing benchmark results
in which a numerical evaluation is performed in order to
compare the Householder method with other alternative vector
orthogonalization techniques, based on numerical robustness,
accuracy and computer efficiency. The analytical expressions of
the considered techniques reveal that they are all numerically
robust and accurate, but the Householder technique is shown to
be the most efficient compared to the other standard methods. In
addition, it is possible to directly apply the Householder formula
to deduce, analytically, differential operators to compute tangent
vectors to an implicit surface, hence, also surface streamlines that
are orthogonal to each other. In addition, these tangent vector
fields can be used to calculate the principal curvature directions of
implicitly defined surfaces. Such a vector operation may find other
applications in mesh generation, surface streamline calculation,
surface fitting with implicit surfaces, surface analysis or shape
interrogation.
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Appendix

This section presents the vector orthogonalization techniques
in an algorithmic form when considering unit vectors as inputs
(Tables A.1–A.4). In particular, theHH and EB vector orthogonaliza-
tion techniques are written with the minimum number of FLOPS.
As for the SP and PM, no simplified expressions were deduced due
Table A.1
Pseudo-code for unit vector HH orthogonalization.

1. Evaluate the sign of the unit’s vector first component, i.e., sign(nx);
2. Determine the tangent vector with the following simplified expression:

t =



−ny 1 −

n2
y

nx + 1
−

nynz

nx + 1

T

, nx ≥ 0
ny 1 +

n2
y

nx − 1
nynz

nx − 1

T

, nx < 0.

3. Determine the binormal vector with the following simplified expression:

b =



−nz −

nynz

nx + 1
1 −

n2
z

nx + 1

T

, nx ≥ 0
nz

nynz

nx − 1
1 +

n2
z

nx − 1

T

, nx < 0.

Table A.2
Pseudo-code for unit vector EB orthogonalization.

1. Determine the non-collinear vector v by choosing the identity matrix
column whose unit component value corresponds to the entry of the given
vector with the least magnitude:

if |nx| ≥ |ny|

v = [0, 1, 0]T
else
v = [1, 0, 0]T

2. Determine the tangent vector by taking the cross-product between n and v,
i.e., t = n × v;

t =




−nz
n2
x + n2

z

0.0
nx

n2
x + n2

z

T

, |nx| ≥
ny


0.0

nz
n2
y + n2

z

−ny
n2
y + n2

z

T

, |nx| <
ny

 .
3. Determine the binormal vector by taking the cross-product between n and
t, i.e., b = n × t;

b =



 nxny
n2
x + n2

z

−


n2
x + n2

z
nynz
n2
x + n2

z

T

, |nx| ≥
ny


−


n2
y + n2

z
nxny
n2
y + n2

z

nxnz
n2
y + n2

z

T

, |nx| <
ny

 .
Table A.3
Pseudo-code for SP vector orthogonalization.

1. Determine the non-collinear vector v:
if |nx|, |ny| ≥ 0 or |nx|, |ny| ≤ 0
v = [nx + 1, ny − 1, nz ]

T

else
v = [nx − 1, ny − 1, nz ]

T

2. Determine the tangent vector:
2.1 take the cross-product between n and v, i.e., t = n × v;
2.2 normalize vector t.

3. Determine the binormal vector:
3.1 take the cross-product between n and t, i.e., b = n × t;
3.2 normalize vector b.

Table A.4
Pseudo-code for PM vector orthogonalization.

1. Determine the projection matrix nnT
= [n1 n2 n3];

2. Normalize vectors n1 , n2 , and n3;
3. Determine the column vector nk that makes the second greatest angle, θ ,
with the given vector n;
4. Determine the axis of rotation as the cross-product between n and nk ,
i.e., u = n × nk;
5. Calculate the rotation matrix with the Rodrigues’ formula, R = R(u, θ);
6. Premultiply the remaining projection matrix columns with the rotation
matrix R to obtain vectors t and b.

to the intricate complexity of the involved vector andmatrix oper-
ations. Note that the input unit vector is given by n = [nx, ny, nz]

T ,
and each method outputs normalized tangent and binormal vec-
tors. In addition, the amount of FLOPS is compared for the HH and
EB techniques (Table A.5).
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Table A.5
Number of FLOPS of the HH and EB techniques given a unit vector. For the HH case,
the values in parentheses correspond to nx < 0.

HH EB

Common
factor:
(nx ±1)−1

1 order operation Common
factor:
(n2

x +n2
z )

−1/2

1 order operation
1 summation/subtraction 1 summation/subtraction
1 division 2 multiplications

1 division
2 moduli
1 square root

Vector t 1 summation/subtraction Vector t 3 multiplications
6 (5) multiplications

Vectorb 1 summation/subtraction Vector b 5 multiplications
6 (5) multiplications 1 division

Total

1 order operation

Total

1 order operation
3 summations/subtractions 1 summation
12 (10) multiplications 10 multiplications
1 division 2 division

2 moduli
1 square root
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